
Deadline-aware Broadcasting in Wireless Networks

with Network Coding

Pouya Ostovari∗, Abdallah Khreishah†, and Jie Wu∗

∗Department of Computer & Information Sciences, Temple University, Philadelphia, PA 19122
†Department of Electrical & Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102

Abstract—Broadcasting with network coding mixes different
packets to minimize the number of transmissions, which improves
the energy efficiency of wireless networks. On the other hand,
delaying the transmissions increases coding opportunities at the
intermediate nodes, but increases the delay of the packets. In
this paper, we consider these two contradicting factors and
study the problem of minimizing the number of transmissions
in wireless networks while meeting the deadlines of different
packets. We show that this problem is NP-complete; therefore,
we provide a heuristic to solve the problem. First, we construct
broadcasting trees, each of them rooted at one source. We then
specify overlapping conditions based on the constructed trees to
determine the number of transmissions each node has to perform
without the deadline constraints. Then, we partition the set of
packets such that coding is performed among the packets of the
same partition, which does not result in deadline misses. Our
simulation results show that our technique not only reduces the
number of transmissions, but also allows the majority of the
nodes to receive their packets on time.

Index Terms—Broadcasting, broadcast tree, network coding,
energy efficiency, deadline, NP-completeness.

I. INTRODUCTION

Broadcasting is used frequently in wireless networks to

disseminate control messages and data in many applications.

Flooding is the simplest broadcasting method in wireless

networks, where each node forwards the received packets to

its neighbors. Clearly, flooding is not an efficient way for

broadcasting due to the unnecessary, redundant transmissions

it causes. To perform broadcasting efficiently, many works

have targeted decreasing the number of transmissions. These

works can be classified into two main categories: probabilistic

and deterministic approaches.

In the probabilistic methods, each node forwards the re-

ceived packets with a given forwarding probability [1]. This

probability should be chosen carefully, so that all nodes are

able to receive the packets with the restricted number of trans-

missions. On the other hand, the deterministic approaches use

the network topology and neighborhood information to select

some forwarding nodes that are responsible for forwarding the

received packets. Connected dominating sets (CDS) [2] and

pruning approaches [3] belong to this category.

With network coding (NC) [4], [5], intermediate nodes

mix packets using mathematical operations, which reduces

the number of transmitted packets. NC can be combined with

both the probabilistic and deterministic approaches to improve

This research was supported in part by NSF grants ECCS 1128209, CNS
1138963, CNS 1065444, and CCF 1028167.

the transmission efficiency in wireless networks. The authors

in [6] show that for fixed networks, NC can, at most, offer a

constant factor of benefits in terms of energy efficiency. They

also propose a probabilistic NC-based broadcasting algorithm.

The work in [7] combines the partial dominant pruning (PDP)

forwarding approach [3], which is a deterministic approach,

with NC. The algorithm uses local, two-hop topology infor-

mation and makes use of opportunistic listening to reduce the

number of transmissions. Using NC with directional antennas

is considered in [8]. The work is based on the deterministic

forwarding approach that uses directional CDS. It can be noted

that the works that use the deterministic approach with NC

limit coding to XOR operations and exploit only local coding

opportunities.

Most of the works on NC focus on maximizing the through-

put [9], achieving fairness [10], or minimizing the energy

consumption [8], [6]. While these metrics are important, delay

and deadline metrics have received less attention from the

community. In this paper, we take a different look at the NC

problem by studying the problem of energy efficient broad-

casting in wireless networks subject to deadline constraints.

Delaying the transmissions reduces energy consumption by

increasing coding opportunities at the intermediate nodes, but

increases the delay of the packets. Thus, it is crucial to specify

the degree of NC such that the packets can meet the deadlines.

NC has been studied with deadlines in [11], [12], but all of

these studies are for single-hop coding and broadcast channels.

In this paper, we consider multihop wireless networks and

we have the following contributions. First, we show that

the problem of a minimum energy broadcast, subject to the

deadline constraints, is NP-complete. Second, We propose a

three-phase algorithm for the problem. Finally, We conduct

simulations to show the benefits of our proposed scheme in

terms of meeting the deadlines and energy efficiency.

II. SYSTEM MODEL

A. Setting and Motivation

We consider a multi-hop wireless network with multiple

broadcast sessions, where a subset of the nodes are sources

while all of the nodes are destinations. Every packet has a

deadline to reach each of the destinations. All of the nodes

are synchronized and all of the links are reliable. We assume

that the nodes have multi-channel multi-radio capability. Thus,

all of the nodes can transmit and receive simultaneously, and

there is no conflict among the links. Also, we assume that

5 6

2 1

7

4

3

11

22

2

3

11

1

2 2

3

(a)
2

34

4

(b)

4

5

6

5 6

2 1

7

4

3

 11

2

2 2

 2

 5

5

6

1

1

· Source node

1

1

2

2 3

4

3

(c)

4

5 6

2 1

7

4

3

1
1

2

2

3

11

1

3

4

1

1

2

2 3

4

Fig. 1. Broadcasting (a): without coding (b): coding p3 and p6 (c): coding
all of the packets together.

each transmission takes one time slot to reach the next hop,

and there is no feedback in the network.

NC reduces the number of transmissions but increases the

delay. The reason is that each node has to wait until receiving

all of the incoming packets to code them together; the sending

time of the coded packet should be at least the maximum

arriving time of all of the received packets. In Fig. 1(a), nodes

3, 6 and 5 are sources for packets p3, p6 and p5, respectively.

The deadline of the packets p3, p6 and p5 are time slots

5, 5 and 6, respectively. The sending time of each packet

is shown in the box beside the packet. In this case since

there is no coding, all of the packets meet their deadlines,

and the number of transmissions is 11. In Fig. 1(b) all of the

packets are coded together. Node 1 receives packets p6, p3
and p5 at time slots 2, 3 and 5, respectively. Thus, in order

to code these packets together, node 1 has to postpone the

transmission of packets to time slot 5. Coding all of the packets

together reduces the number of transmissions to 8 but causes

a deadline miss as node 3 receives packet p6 after the packet’s

deadline. Therefore, we have to find another solution in which

we reduce the number of the transmitted packets while meeting

the deadlines.

In Fig. 1(c) we code only packets p3 and p6 together. The

number of transmissions in Fig. 1(c) is equal to 9 which is

more than in Fig. 1(b), but in Fig. 1(c) there is no deadline

miss. Therefore, an efficient solution for the problem of

energy efficient broadcasting with deadline constraints should

be partitioning the set of packets such that coding the packets

of each partition does not result in deadline misses. Thus, our

problem becomes finding the set of partitions that minimize the

total number of transmissions such that all of the packets meet

their deadlines. We assume that the broadcasting operation is

periodic. Thus, our target is to find an efficient solution for the

problem and then use that solution in the consecutive rounds.

B. Linear Network Coding

In this paper, we use linear NC. Linear NC is introduced

in [5] as it is shown to achieve the capacity for the single

multicast session problem. A useful algebraic representation

of the linear NC problem is provided in [13].

In linear NC, each node generates and sends a linear

combination of the received packets over a finite field. When

a node receives an innovative packet, it stores this packet in its

packet buffer and the corresponding coefficients vector in its

coefficients buffer. An innovative packet is a received packet

such that its coefficient vector increases the rank of the matrix

formed by the received coefficient vectors. In other words,

an innovative packet is a linearly independent packet to the

previously received packets. Each forwarder node continues

this process. Assume that K single packets are coded together.

When a destination node receives K linearly independent

coded packets, it will be able to decode all of the coded packets

and retrieve all of the single packets.

The decoding process is done using Gaussian elimination

for solving a system of linear equations. In [14], it is shown

that selecting the coefficients, in a distributed manner at

random, achieves the capacity asymptotically with respect to

the finite field size.

III. HEURISTIC

In the appendix, we prove that the problem of energy-

efficient broadcasting, subject to the deadline constraints,

is NP-complete. Therefore, in this section, we propose a

deadline-aware network coding (DANC) heuristic to solve the

problem. For simplicity, we assume that each packet has the

same deadline to reach all of the destinations. Our algorithm

contains following three phases:

• Constructing broadcasting trees: This phase ensures the

decodability of the coded packets at the destination nodes.

This phase is done once in the initializing phase.

• Partitioning the set of packets: The purpose of this phase

is to guarantee meeting all the deadlines. This phase is

done once in the initializing phase.

• Performing coding: In this phase, the relay nodes do the

actual coding. This phase is repeated periodically.

By using broadcasting trees, each node receives enough

linearly independent packets, so the nodes are able to decode

the coded packets. If we allow all of the packets to be coded

together, we can decrease the number of transmissions, but the

delay increases and some packets may miss their deadlines.

Therefore, we partition the set of packets such that coding the

packets of each partition does not result in deadline misses.

We assume that the broadcasting operation is periodic; we

run the first two phases only once, then the third phase runs

periodically. Thus, the complexity for the first two phases is

not a major issue (however it is polynomial), though their

performance is important because they decide the operations

of the third phase.

A. Constructing Broadcasting Trees

We use broadcasting trees to broadcast the packets. A

broadcasting tree is a spanning tree rooted at one source

node to reach all of the other nodes. Fig. 2(b) shows three

broadcasting trees. If a node is a non-leaf node in more

(a) (b)

5 6

2 1

7

4

3

5 6

2 1

7

4

3

· Tree 5

· Tree 6

· Tree 3

· Source

node

Fig. 2. (a): A given topology. (b): Two broadcasting trees

than one broadcasting tree, it has the opportunity to code

the received packets in order to send fewer packets. Assume

that there are K sources we will have K broadcasting trees,

so each destination node receives K coded packets, each of

them from a different broadcasting tree. In order to ensure the

decodability of the packets at the destination nodes, the K
received packets have to be linearly independent.

We define the overlap-degree of node u to v as the the

number of trees that use link (u, v), and we represent it

as δ(u, v). Also, we define the maximum overlap-degree of

node u as ∆(u) = maxv(δ(u, v)). In Fig. 2(b), δ(6, 1) = 1,

δ(6, 5) = 1, and δ(6, 7) = 2, so ∆(6) = 2. In order

to guarantee decodability, node 6 has to send two linearly

independent coded packets to node 7. Each of these packets

has to contain both of the packets p4 and p6. To make sure

that the coefficient vectors in the buffers of all of the nodes

achieve full rank, the number of transmissions at node u has to

be at least equal to ∆(u). Consequently, if we can reduce ∆ of

each node, we can reduce the total number of transmissions.

If we select the coefficients in a distributed manner at random,

destination nodes will receive K linearly independent coded

packets with high probability, almost 1 [14].

Our heuristic sequentially constructs broadcasting trees,

each of them rooted at a source node. First, this approach

sorts the sources in increasing order of the deadline of their

packets. Then, in each iteration, our algorithm starts from a

new source and traverses the network using the BFS algorithm.

During traversal, each node not in the tree selects a node in

the tree as its parent based on the following two rules:

• Rule1: Node v selects the parent u that has the maximum

number of effective neighbors.

• Rule2: Node v selects the parent u where selecting that

node does not increase ∆(u).

Effective neighbors of node u are the neighbors that do not

have a parent in the tree. While constructing the broadcasting

trees, we give more priority to Rule1 over Rule2. The reason

is that a node with the maximum number of effective neighbors

can cover more nodes by a single transmission. Algorithm 1

describes our algorithm.

Fig. 3(b) shows a constructed broadcasting tree. The depth

of nodes 6 and 7 in the constructed tree is 3, but the depth

of the shortest path tree is 2. If the depth of a constructed

broadcasting tree is more than the deadline of the packet of

its source node, we will reconstruct that tree by adding a new

rule to the algorithm. Rule3: node u selects a parent with the

minimum depth. We give more priority to this rule than the

previous rules to guarantee meeting the deadline. The output

of the new algorithm is a shortest path tree. The constructed

Algorithm 1 Constructing broadcasting trees

for each source node u in ascending order of deadlines do

Add node u to tree T (u)
while there is a node /∈ T (u) do

Select the next node v /∈ T (u) using BFS algorithm

Select node w ∈ T (u) as v’s parent based on Rule1
and Rule2
Select w as parent of its neighbors /∈ T (u)

(a) (b)

5 6

2 1

7

4

3

5 6

2 1

7

4

3

5 6

2 1

7

4

3

(c)

Fig. 3. (a): A given topology. (b):Broadcasting tree constructed using Rule1
and Rule2. (c): Shortest path tree.

tree is shown in Fig. 3(c). The number of transmissions in Fig.

3(b) is 3 and in Fig. 3(c) is 4. Therefore, we cannot start from

Rule3, and we only use Rule3 if we find that using Rule1
and Rule2 does not guarantee meeting the deadline.

Assume that in Fig. 2 we have constructed tree 5, and we

want to construct tree 6. First, node 1 selects node 6 as its

parent, and nodes 5 and 7 connect to node 6. Then, node 2

can select node 1 or 6 as its parent. Node 2 selects node 1

which has more (two) effective neighbors. If node 3 selects

node 2, ∆(2) increases, so node 3 selects node 4 as the parent.

B. Partitioning the Set of Packets

So far, we have discussed the first phase which guarantees

the decodability of the packets at the destination nodes. How-

ever, it does not guarantee meeting the deadlines. To prevent

missing the deadlines, we have to decide which packets to

code together. For this purpose, we use a greedy heuristic to

partition the set of packets into different partitions, such that

coding all of the packets of each set together does not result

in deadline misses.

Our Deadline-Aware Network Coding (DANC) heuristic

uses the constructed broadcasting trees. First, the algorithm

sorts the list of the packets in increasing order of their

deadlines (each packet belongs to the root of one tree). Then,

the algorithm places the first packet of the list to the first

partition. After that, the algorithm finds which packets can

be added to the partition without causing deadline misses.

The algorithm finds the remaining partitions using the same

operation. The detailed algorithm is shown in Algorithm 2.

To compute the receiving times of the packets, we use the

Receiving Time (RT) algorithm. First, for each relay node u,

the RT algorithm finds the set of packets in partition P that

node u is a relay node of. We represent this set as RP (u).
Using the BFS algorithm, the RT algorithm traverses the trees

of a given partition P simultaneously. If all of the traversal

trees that their respective packets are in RP (u) have reached

node u, the algorithm assigns the maximum arriving time of

the trees, plus one (each transmission takes one time slot to

Algorithm 2 Partitioning the set of packets

Sort list of packets L in increasing order of deadlines

while L 6= empty do

i← i+ 1, Create new partition Pi

Transfer the first packet of L to Pi

for each packet p of L in ascending order do

Using The RT algorithm, compute receiving times of

the packets in Pi ∪ {p}
if no deadline misses then

Delete p from L, Add p to Pi

Return {P1, .., Pi}

Algorithm 3 Performing coding

On receiving packet p by node u
if u ∈ relay nodes of p then

Find the partition P such that p ∈ P
wait until receiving all of the packets ∈ RP (u)
send ∆P (u) random combination of the packets ∈ RP (u)

reach the next hop), to the receiving time of the corresponding

packets by the children nodes of node u.

In Fig. 1, the deadlines of the packet p3, p6 and p5 are 5,

5 and 6, respectively. First, we add packet p3 to partition P1.

Then we code packet p6 with p3 and compute the receiving

times of the packets. The sending time of the packets are

shown in Fig. 1(c). Because all of the nodes receive both

packets on-time, we add packet p6 to partition P1. Next, we

code packet p5 with the packets in P1. Fig. 1(b) shows the

sending time of the packets. We cannot add packet p5 to

partition P1, as nodes 1 and 5 receive packets p3 and p6 after

their deadlines. Therefore, the partitions are {3,6} and {5}.

C. Performing Coding

We extend ∆(u) to ∆P (u). ∆P (u) represents the maximum

overlap-degree of node u for the packets in partition P . From

the first two phases, each node u knows which packets it has

to forward, and also it knows ∆P (u) of each partition which

specifies the number of transmissions of the coded packets

of that partition. When a relay node u receives a packet p, it

finds the partition P such that p ∈ P . Then, node u waits until

receiving all of the packets of partition P so that the node is

a relay node of (RP (u)). Assuming that ∆P (u) = m, node u
sends m random linear combinations of the packets. The relay

nodes perform similar operations for the other partitions.

IV. EXTENSIONS

A. Deadlock Detection and Recovery

Since there is more than one source in our problem, it is

likely that deadlock occurs in the network. When there is a

circular waiting among the processes (nodes) to access the

resources (packets), a deadlock happens. Fig. 4(a) shows a

deadlock between two trees. In this figure, nodes 3 and 6 are

sources. Node 4 receives a packet from node 3 and waits to

receive the other packet from node 1. On the other hand, node

5 6

2 1

7

4

3
· Tree 5

· Tree 6

· Tree 3

6

2 1 4

(a) (b)

Fig. 4. (a): A cycle between two trees. (b): Coding optimization.

1 waits to receive a packet from node 4. As a result, we have

a deadlock in this network.

We resolve the deadlock problem in the partitioning phase.

To address the deadlock problem, we use a distributed dead-

lock detection and recovery scheme [15]. We allow deadlocks

to happen, then we resolve them. To resolve that deadlock, at

least one node among the nodes that cause the deadlock has

to forward a packet without waiting for other packets. In Fig.

1, node 4 can break the deadlock by forwarding packet 3.

Using convolutional codes [16] is another way to resolve

the deadlocks. However, the complexity of convolutional codes

limits their applicability. In our heuristic, we use linear coding

which is less complex than convolutional codes and can be

implemented in a decentralized way. We also use deadlock

detection and recovery to resolve the deadlocks.

B. Coding Optimization

Assume that in Fig. 4(b), the deadlines are set such that all

of the packets can be coded together. Also, assume that node 1

has received packet p5. In our former coding algorithm, node

1 has to wait to receive all of the packets. However, node 1

does not need to wait for other packets, and it can send packet

p5 immediately. Then, the next transmission covers packets

p3 and p6. Therefore, node u can send the packets with the

same number of transmissions and less delay. Only, we need

to ensure that the sent packets are linearly independent and

collectively cover all of the packets.

To reduce the coding delay while preserving the number

of transmissions of each node u to be equal to ∆(u), we

define the following rule. Node u can perform a transmission

if for each children node v of u, at least one of the following

conditions is true. Condition1: the coded packet contains a

new packet pi, such that there is a link from nodes u to

node v in tree Ti. Condition2: node u has sent all of the

packets that there is a link in their respective trees to node v.

Condition3: node u has transmitted less than ∆(u)− δ(u, v)
packets. Condition1 means that node u has a new packet for

node v. When node v has received all of the necessary packets

from node u, Condition2 is true; node u does not need to

send any more packets to node u. Condition3 is related to

the example in Fig. 4(b). It means that ∆(u)− δ(u, v) of the

transmissions do not need to contain a new packet for node v.

As a result, these transmissions can contain packets for only

the children of u, such that the maximum overlap-degree of

node u is to that node (node 4 in Fig. 4(b)).

16 25 36 49
0

20

40

60

80

100

Number of nodes

O
n

ti
m

e
 (

%
)

NDANC

DANC

PFNC, FF=0.4

PFNC, FF=0.6

PFNC, FF=0.8

NOCT

(a)

16 25 36 49
50

60

70

80

90

100

Number of nodes

D
e

c
o

d
a

b
le

 p
a

c
k
e

ts
 (

%
)

NDANC

DANC

PFNC, FF=0.4

PFNC, FF=0.6

PFNC, FF=0.8

NONCT

(b)

Fig. 5. (a): On-time received packets. (b): Total number of decodable packets.

V. SIMULATION RESULTS

In addition to the DANC approach, we simulate a Non

Deadline-Aware Network Coding (NDANC) approach. In the

NDANC approach, we put all of the packets in the same

partition and allow all of the packets to be coded together. We

evaluate the DANC and NDANC approaches by comparing the

number of transmissions, the on-time received packets, and the

decodable packets. To find the number of decodable packets,

we ignore the deadlines and compute the number of received

packets that can be decoded at the destination nodes.

We implemented a simulator in MATLAB environment to

compare our proposed methods with the Probabilistic For-

warding with Network Coding (PFNC) approach in [6]. In [6],

when a node receives an innovative packet, it sends a coded

packet, of the innovative packets it has in its buffer, with a

given probability. The value of this probability is called the

Forwarding Factor (FF). We also simulate a deterministic,

non-coding protocol. In this protocol, we use broadcasting

trees to broadcast the packets, and we call it the Non-Coding

Tree (NONCT) approach in the plots.

We perform our simulation on grid topologies with 16, 25,

36 and 49 nodes, and with random deadlines in the range of

r and 6r, where r is the diameter1 of the network. For each

grid size, we run the simulation for 100 cases.

In the first experiment, we compare the number of on-time

received packets. As is shown in Fig. 5(a), the DANC method

guarantees meeting the deadlines. Also, in the NONCT ap-

proach, all nodes receive the packets on-time because there is

no coding. The number of on-time received packets increases

as we increase the forwarding factor since, by increasing FF,

each node forwards more packets. Because all of the packets

are coded together in the NDANC and PFNC approaches, the

delay increases as the number of nodes increases; as a result,

more packets miss their deadlines.

In the next experiment, we ignore the deadline constraints

and compare the number of decodable packets at the nodes.

Fig. 5(b) shows that in the DANC, NDANC, and NONCT

approaches, all of the nodes can decode all of the packets, as

using broadcasting trees guarantees decodability. In contrast,

some of the received packets in the probabilistic approach are

1The diameter of the network is the distance in terms of hop count between
the farthest nodes of the network.

16 25 36 49
0

200

400

600

800

1000

1200

1400

Number of nodes

N
u

m
b

e
r

o
f

tr
a

n
s
m

is
s
io

n
s

NDANC

DANC

PFNC, FF=0.4

PFNC, FF=0.6

PFNC, FF=0.8

NOCT

(a)

1 2 3 4
0

200

400

600

800

1000

Number of nodes

N
u
m

b
e
r

o
f
tr

a
n
s
m

is
s
io

n
s

NDANC

DANC

PFNC, FF=0.6

(b)

Fig. 6. (a): Total number of transmissions. (b): Total number of transmissions
and confidence interval with confidence level equal to 95%.

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance

F
(x

)

Empirical CDF

NDANC

DANC

Fig. 7. Empirical CDF of performance of our approaches compared with
probabilistic approach with forwarding factor 0.4.

not decodable. By increasing the forwarding factor, due to

the increase in the number of transmissions, the number of

decodable packets in the probabilistic approach increases.

Fig. 6(a) shows the total number of transmissions for

different approaches. Both of our heuristics have fewer trans-

missions than the probabilistic approach. The reason is that

the redundant transmissions are removed. Only the PFNC ap-

proach with FF = 0.4 has less transmissions than the DANC

approach, but the number of on-time received packets of the

PFNC approach is between 30 to 90 percent of the DANC

approach. The DANC method has more transmissions than the

NDANC approach since, in the NDANC approach, we code

all of the packets together. As it is anticipated, the number of

transmissions of the NONCT approach is more than the DANC

and NDANC approaches, and the NDANC approach has the

fewest number of transmissions. The confidence intervals of

the NDANC, DANC, and PFNC approach with confidence

level equal to 95% are shown in Fig. 6(b).

Fig. 7 shows the performance of our heuristics. For each

simulation run, we calculate the ratio of the number of on-

time received packets in our heuristics and in the probabilistic

approach with a forwarding factor of 0.4, and we show the

empirical CDF of the results. It can be seen that in less than

only 3% of the cases, the number of on-time received packets

of the NDANC method is less than that of the PFNC approach,

while the performance of the DANC approach is always better

than that of the PFNC approach. In about 10% of the cases,

the performance of the DANC approach is between five and

six times that of the PFNC approach, and in about 45% of the

cases, the performance of the DANC approach is more than

three times that of the PFNC approach.

VI. CONCLUSION

We study the problem of energy-efficient broadcasting with

deadline constraints. We prove that this problem is NP-

complete. Thus, we propose a deadline-aware heuristic to solve

this problem. We use the concept of broadcasting trees to select

forwarder nodes. Our DANC heuristic classifies the packets

into sets, such that coding all of the packets of each set does

not result in a deadline miss. Our heuristic also works for

the case when packets do not have deadline constraints. In

wireless networks with periodic broadcasting, our protocol

computes the coding decision once, and based on that, each

node determines its responsibility in future rounds.

REFERENCES

[1] Y. Sasson, D. Cavin, and A. Schiper, “Probabilistic broadcast for
flooding in wireless mobile ad hoc networks,” in IEEE WCNC 2003,
vol. 2, Mar 2003, pp. 1124–1130.

[2] J. Wu and H. Li, “On calculating connected dominating sets for efficient
routing in ad hoc wireless networks,” in DIALM, 1999.

[3] W. Lou and J. Wu, “On reducing broadcast redundancy in ad hoc
wireless networks,” IEEE Transactions on Mobile Computing, vol. 1,
no. 2, pp. 111– 122, Apr-Jun 2002.

[4] R. Ahlswede, N. Cai, S. Li, and R. Yeung, “Network information flow,”
IEEE Transactions on Information Theory, vol. 46, no. 4, pp. 1204–
1216, Jul 2000.

[5] S. Li, R. Yeung, and N. Cai, “Linear network coding,” IEEE Transac-

tions on Information Theory, vol. 49, no. 2, pp. 371–381, 2003.
[6] C. Fragouli, J. Widmer, and J. L. Boudec, “Efficient broadcasting using

network coding,” IEEE/ACM Transactions on Networking, vol. 16, no. 2,
pp. 450–463, Apr 2008.

[7] L. Li, R. Ramjee, M. Buddhikot, and S. Miller, “Network coding-based
broadcast in mobile ad-hoc networks,” in IEEE INFOCOM, May 2007.

[8] S. Yang and J. Wu, “Efficient broadcasting using network coding and
directional antennas in MANETs,” IEEE Transactions on Parallel and

Distributed Systems, vol. 21, no. 2, pp. 148–161, Feb 2010.
[9] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft,

“Xors in the air: practical wireless network coding,” in ACM SIGCOMM,
2006.

[10] A. Khreishah, C. Wang, and N. Shroff, “Cross-layer optimization for
wireless multihop networks with pairwise intersession network coding,”
IEEE Journal on Selected Areas in Communications, vol. 27, no. 5, pp.
606–621, 2009.

[11] X. Li, C.-C. Wang, and X. Lin, “Throughput and delay analysis on
uncoded and coded wireless broadcast with hard deadline constraints,”
in IEEE INFOCOM, 2010.

[12] C. Zhan and Y. Xu, “Broadcast scheduling based on network coding in
time critical wireless networks,” in IEEE International Symposium on

Network Coding, June 2010.
[13] R. Koetter and M. Medard, “An algebraic approach to network coding,”

IEEE/ACM Transactions on Networking, vol. 11, no. 5, pp. 782– 795,
Oct 2003.

[14] T. Ho, M. Médard, R. Koetter, D. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Transactions on Information Theory, vol. 52, no. 10, pp. 4413–
4430, 2006.

[15] J. Wu, Distributed System Design. CRC Press, 1999.
[16] E. Erez and M. Feder, “Convolutional network codes for cyclic net-

works,” in Proc. NETCOD 2005 Workshops, 2005.

APPENDIX

Theorem 1: The problem of energy-efficient broadcasting,

subject to the deadline constraints, is NP-complete.

Proof: In order to show that the problem is NP-complete,

we need to show that it is NP and NP-hard.

It is easy to show that this problem is NP; if we are given the

topology, the set of sources and destinations, and the energy

consumption at every node, we can verify in polynomial time,

Fig. 8. A reduction from an instance of a vector packing problem to
an energy-efficient broadcast with deadline constraints. (Bjc represents the
decoding delay for the packets of the set c at node dj .)

using the BFS algorithm, that these parameters solve the

problem.

In order to show that it is NP-hard, we need to provide a

polynomial time reduction from a well known NP-complete

problem. We choose the vector packing problem as the known

NP-complete problem. In vector packing, we have K vectors,

each with N positive integers. The i-the vector can be rep-

resented by Vi = [vi1, . . . , viN]. We also have identical bin

vectors. Each bin vector contains N integers and can be rep-

resented by [b1, . . . , bN]. The problem is packing the vectors

in as few bins as possible. The constraint is that the sum of the

vectors in each bin cannot exceed the size of the bin. Formally,

the problem can be described as minimizing L, subject to:∑
i∈l vij ≤ bj , ∀l ∈ {1, . . . , L}, ∀j ∈ {1, . . . , N}, where

i ∈ l means that the i-th vector is packed in the l-th bin.

The reduction is as follows. For every instance of the vector

packing problem, we generate an instance of our problem

according to the following rules. First, we place K sources,

N intermediate nodes ui, i ∈ {1, . . . , N}, and N destination

nodes in the graph. We connect each source to all intermediate

nodes and each intermediate node to K different destinations,

such that each destination node has K input links from

K different intermediate nodes. Then, we set the delay of

the link between si and uj to vij , ∀i, j, the delay for the

links connecting the u and d nodes to zero, and all of the

transmission costs to zero except for the u nodes where we

set the cost to 1 per sent packet.

Let M =
maxij(vij)
minij(vij)

and let Djc represent the delay for

receiving the |c| linearly independednt packets from the set c
at node j when we choose to code the packets in the set c.
We set the decoding delay for the packets of the set c at node

dj as M
∑

i∈c vij −Dic. Note that due to the multiplication

by M , the decoding delay is always ≥ 0. Therefore, the total

delay at node dj to receive and decode the packets in the set

c would be M
∑

i∈c vij . Also, the total cost of transmissions

is proportional to the number of partitions where coding is

allowed. This is due to setting the cost of all transmissions to

zero except the cost of transmissions at the u nodes.

After doing this reduction, if we set the deadline of packet

pi to reach dj to Mbj , it is easy to see that the vector

packing problem is solvable iff the minimum cost deadline-

aware problem is solvable on the constructed graph.

Fig. 8 shows a reduction from a vector packing problem

with three 2-dimensional vectors to an energy-efficient broad-

casting problem with deadline constraints.

